2,821 research outputs found

    String Theory, Non-Empirical Theory Assessment, and the Context of Pursuit

    Get PDF
    In this paper, I offer an analysis of the radical disagreement over the adequacy of string theory. The prominence of string theory despite its notorious lack of empirical support is sometimes explained as a troubling case of science gone awry, driven largely by sociological mechanisms such as groupthink (e.g. Smolin 2006). Others, such as Dawid (2013), explain the controversy by positing a methodological revolution of sorts, according to which string theorists have quietly turned to nonempirical methods of theory assessment given the technological inability to directly test the theory. The appropriate response, according to Dawid, is to acknowledge this development and widen the canons of acceptable scientific methods. As I’ll argue, however, the current situation in fundamental physics does not require either of these responses. Rather, as I’ll suggest, much of the controversy stems from a failure to properly distinguish the “context of justification” from the “context of pursuit”. Both those who accuse string theorists of betraying the scientific method and those who advocate an enlarged conception of scientific methodology objectionably conflate epistemic justification with judgements of pursuit-worthiness. Once we get clear about this distinction and about the different norms governing the two contexts, the current situation in fundamental physics becomes much less puzzling. After defending this diagnosis of the controversy, I’ll show how the argument patterns that have been posited by Dawid as constituting an emergent methodological revolution in science are better off if reworked as arguments belonging to the context of pursuit

    Kevin McCain and Ted Poston’s Best Explanations

    Get PDF
    In this critical notice, I focus my attention on the chapters that deal with the explanationist response to skepticism

    String Theory, Non-Empirical Theory Assessment, and the Context of Pursuit

    Get PDF
    : In this paper, I offer an analysis of the radical disagreement over the adequacy of string theory. The prominence of string theory despite its notorious lack of empirical support is sometimes explained as a troubling case of science gone awry, driven largely by sociological mechanisms such as groupthink (e.g. Smolin 2006). Others, such as Dawid (2013), explain the controversy by positing a methodological revolution of sorts, according to which string theorists have quietly turned to non-empirical methods of theory assessment given the technological inability to directly test the theory. The appropriate response, according to Dawid, is to acknowledge this development and widen the canons of acceptable scientific methods. As I’ll argue, however, the current situation in fundamental physics does not require either of these responses. Rather, as I’ll suggest, much of the controversy stems from a failure to properly distinguish the “context of justification” from the “context of pursuit”. Both those who accuse string theorists of betraying the scientific method and those who advocate an enlarged conception of scientific methodology objectionably conflate epistemic justification with judgements of pursuit-worthiness. Once we get clear about this distinction and about the different norms governing the two contexts, the current situation in fundamental physics becomes much less puzzling. After defending this diagnosis of the controversy, I’ll show how the argument patterns that have been posited by Dawid as constituting an emergent methodological revolution in science are better off if reworked as arguments belonging to the context of pursuit

    Evidence and explanation in Cicero's On Divination

    Get PDF
    In this paper, I examine Cicero’s oft-neglected De Divinatione, a dialogue investigating the legitimacy of the practice of divination. First, I offer a novel analysis of the main arguments for divination given by Quintus, highlighting the fact that he employs two logically distinct argument forms. Next, I turn to the first of the main arguments against divination given by Marcus. Here I show, with the help of modern probabilistic tools, that Marcus’ skeptical response is far from the decisive, proto-naturalistic assault on superstition that it is sometimes portrayed to be. Then, I offer an extended analysis of the second of the main arguments against divination given by Marcus. Inspired by Marcus’ second main argument, I formulate, explicate, and defend a substantive principle of scientific methodology that I call the “Ciceronian Causal-Nomological Requirement” (CCR). Roughly, this principle states that causal knowledge is essential for relying on correlations in predictive inference. Although I go on to argue that Marcus’ application of the CCR in his debate with Quintus is dialectically inadequate, I conclude that De Divinatione deserves its place in Cicero’s philosophical corpus, and that ultimately, its significance for the history and philosophy of science ought to be recognized

    S-PRAC: Fast Partial Packet Recovery with Network Coding in Very Noisy Wireless Channels

    Full text link
    Well-known error detection and correction solutions in wireless communications are slow or incur high transmission overhead. Recently, notable solutions like PRAC and DAPRAC, implementing partial packet recovery with network coding, could address these problems. However, they perform slowly when there are many errors. We propose S-PRAC, a fast scheme for partial packet recovery, particularly designed for very noisy wireless channels. S-PRAC improves on DAPRAC. It divides each packet into segments consisting of a fixed number of small RLNC encoded symbols and then attaches a CRC code to each segment and one to each coded packet. Extensive simulations show that S-PRAC can detect and correct errors quickly. It also outperforms DAPRAC significantly when the number of errors is high

    Total Roman Domination Number of Rooted Product Graphs

    Full text link
    [EN] Let G be a graph with no isolated vertex and f:V(G)->{0,1,2} a function. If f satisfies that every vertex in the set {v is an element of V(G):f(v)=0} is adjacent to at least one vertex in the set {v is an element of V(G):f(v)=2}, and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertex, then we say that f is a total Roman dominating function on G. The minimum weight omega(f)= n-ary sumation v is an element of V(G)f(v) among all total Roman dominating functions f on G is the total Roman domination number of G. In this article we study this parameter for the rooted product graphs. Specifically, we obtain closed formulas and tight bounds for the total Roman domination number of rooted product graphs in terms of domination invariants of the factor graphs involved in this product.Cabrera Martinez, A.; Cabrera GarcĂ­a, S.; CarriĂłn GarcĂ­a, A.; Hernandez Mira, FA. (2020). Total Roman Domination Number of Rooted Product Graphs. Mathematics. 8(10):1-13. https://doi.org/10.3390/math8101850S11381

    Does IBE Require a ‘Model’ of Explanation?

    Get PDF

    Critical Notice of “Kevin McCain and Ted Poston (eds.), Best Explanations: New Essays on Inference to the Best Explanation”

    Get PDF
    I give a critical overview of the volume, focusing my attention on the chapters that deal with the explanationist response to skepticis

    The Fate of Explanatory Reasoning in the Age of Big Data

    Get PDF
    In this paper, I critically evaluate several related, provocative claims made by proponents of data-intensive science and “Big Data” which bear on scientific methodology, especially the claim that scientists will soon no longer have any use for familiar concepts like causation and explanation. After introducing the issue, in section 2, I elaborate on the alleged changes to scientific method that feature prominently in discussions of Big Data. In section 3, I argue that these methodological claims are in tension with a prominent account of scientific method, often called “Inference to the Best Explanation” (IBE). Later on, in section 3, I consider an argument against IBE that will be congenial to proponents of Big Data, namely the argument due to Roche and Sober (2013) that “explanatoriness is evidentially irrelevant”. This argument is based on Bayesianism, one of the most prominent general accounts of theory-confirmation. In section 4, I consider some extant responses to this argument, especially that of Climenhaga (2017). In section 5, I argue that Roche and Sober’s argument does not show that explanatory reasoning is dispensable. In section 6, I argue that there is good reason to think explanatory reasoning will continue to prove indispensable in scientific practice. Drawing on Cicero’s oft-neglected De Divinatione, I formulate what I call the “Ciceronian Causal-nomological Requirement”, (CCR), which states roughly that causal-nomological knowledge is essential for relying on correlations in predictive inference. I defend a version of the CCR by appealing to the challenge of “spurious correlations”, chance correlations which we should not rely upon for predictive inference. In section 7, I offer some concluding remarks
    • 

    corecore